
Jadeite
ReadMe and User’s Guide
S Y S T E M S

3.0.85

October 2019
doc rev. October 28, 2019

.

Jadeite 3.0.85 ReadMe and User’s Guide
This documentation is furnished for informational use only and is subject to change without notice. GemTalk
Systems LLC assumes no responsibility or liability for any errors or inaccuracies that may appear in this
documentation.

COPYRIGHTS
This software product, its documentation, and its user interface © 2018 by GemTalk Systems LLC and other
contributors.

Rowan, Jadeite, and the SETT tools are licensed under the MIT license. Permission is granted, free of charge, to
any person obtaining a copy of the software and associated documentation files (the “Software”), to deal in the
Software without restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH
THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

TRADEMARKS
GemTalk, GemStone, GemBuilder, and the GemTalk logo are trademarks of GemTalk Systems LLC, or of
VMware, Inc., previously of GemStone Systems, Inc., in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Oracle is a trademarks or registered trademarks of Oracle and/or its affiliates.

Intel and Pentium are registered trademarks of Intel Corporation in the United States and other countries.

Microsoft, Windows, and Windows Server are registered trademarks of Microsoft Corporation in the United
States and other countries.

Linux is a registered trademark of Linus Torvalds and others.

Red Hat and all Red Hat-based trademarks and logos are trademarks or registered trademarks of Red Hat, Inc. in
the United States and other countries.

Ubuntu is a registered trademark of Canonical Ltd., Inc., in the U.S. and other countries.

SUSE is a registered trademark of Novell, Inc. in the United States and other countries.

VisualWorks and StORE are trademarks or registered trademarks of Cincom Systems, Inc. in the United States
and other countries.

Other company or product names mentioned herein may be trademarks or registered trademarks of their
respective owners. Trademark specifications are subject to change without notice. GemTalk Systems cannot attest
to the accuracy of all trademark information. Use of a term in this documentation should not be regarded as
affecting the validity of any trademark or service mark.

GemTalk Systems LLC
15220 NW Greenbrier Parkway
Suite 240
Beaverton, OR 97006
2 GemTalk Systems

Table of Contents
Chapter 1. Introduction to Jadeite
Supported Jadeite Platforms . 5
Supported GemStone Server Platforms . 5
Other Documentation . 5

1.1 Installing Jadeite . 6
Requirements for Rowan users other than DataCurator and SystemUser 6

1.2 Error Reporting. . 6
1.3 Rowan Overview. . 6

Code management in Rowan . 7
Rowan Packages . 7

Class categories and Package names . 7
Rowan Projects . 7
Project Loading . 8

Class Initialization . 8
GemStone SymbolDictionaries . 8
Extension Methods . 9

Method category (protocol) names and Package names 9
Global extension methods . 9

Class Versioning in Rowan . 9
Rowan Files, Directories, and Formats . 9

Rowan Project Configuration Files . 10
Rowan Project Specification Files . 10

Chapter 2. Jadeite
Jadeite vs. GBS . 11
Transaction mode . 11

2.1 Logging in and Project Operations . 12
Logging in . 12
GemTalk Systems 3

Jadeite 3.0.85 ReadMe and User’s Guide
Console Window . 13
The Console Jadeite menu . 14
Preferences File . 15

Jadeite settings . 15
Startup windows . 15

Preferences File Browser . 15
The Console Browse menu . 16
Project Operations and Workflow. 17

Project Menu Operations . 18
Changes Browser . 19
Example Project Load. 20

2.2 Browsing and Code Development . 21
The Project Browser . 22

Projects Pane . 22
Packages Pane / Dictionaries Pane . 23
Classes Pane . 23
Categories Pane / Variables Pane . 23
Methods Pane . 23

Multiple Tabs in Project Browser . 24
Features and Attributes of the lower/code pane 24

Background Color . 24
Class Definition Tab . 24
Class Documentation Tab . 24
Method Source Tab . 24
SUnit Tab . 25
Comparison Tab . 26
Project Tab . 26

Method List Browser . 27
Querying: Senders, Implementors, etc. . 28

Popup Menu context-aware menu items 28
SUnit Browser . 30

2.3 Debugger . 31
Stepping through code . 32
Breakpoints . 32
Breakpoint Browser . 33
Disabling Breakpoints . 34

2.4 Code Caveats . 35
Non-Rowanized code . 35
Aborts and the Transient Symbol Dictionary. 35
Adding Packages to Project . 35

Chapter 3. Recommended Workflow
Getting Started . 37
Code development . 37
Sharing work . 38
4 GemTalk Systems

Chapter

1 Introduction to Jadeite
Jadeite is a graphical user interface for GemStone Smalltalk development. Jadeite is a
Dolphin-based Smalltalk application that runs on Windows. It allows login to a GemStone
Repository in which the Rowan tools are loaded, to allow project and package
management, code development, and debugging.

Jadeite relies on the Jadeite Rowan Services layer, which is provided with the Rowan
Tools. The coordinating version of the Jadeite Rowan Services must be loaded in the
Rowan GemStone repository for Jadeite to work correctly.

If the versions of Jadeite and the Jadeite Rowan Services do not match, on login or on
Rowan load, a warning is reported; while login can proceed, you are likely to encounter
message not understood or other errors from Jadeite operations.

Supported Jadeite Platforms
Jadeite is supported on Windows only.

It has been tested on Windows 7 and Windows 10.

Supported GemStone Server Platforms
Jadeite has been tested with versions of Rowan installed into GemStone/S v3.2.15 and
3.2.17.

Other Documentation
Jadeite’s functionality is implemented in GemStone/S 64 Bit and Rowan for GemStone.

More detailed information about Rowan is provided in the Rowan for GemStone User’s
Guide, Rowan-UsersGuide-1.0.pdf.

Documentation for the GemStone/S 64 Bit product can be found on the GemTalk website,
gemtalksystems.com.
GemTalk Systems 5

Jadeite 3.0.85 ReadMe and User’s Guide
1.1 Installing Jadeite
Jadeite is a Windows executable (Jadeite.exe) with associated directories containing .dlls
and icons.

To use, copy the directory containing these to a Windows directory and start the executable
jadeite.exe. No updates to the OS path or %GEMSTONE% environment variable are
required.

If you are installing over a previous version of Jadeite, be sure to delete the .stb and
.errors files.

Jadeite can only log into a GemStone repository that has been Rowan-enabled.

Requirements for Rowan users other than DataCurator and SystemUser
Using Rowan to write or modify code requires permissions that would not ordinarily be
given to an application UserProfile. This is required for users who will load projects or
update methods, and are not necessary for users logging in to browse or execute code.

The UserProfile must have OtherPassword privilege, as well as CodeModification
Privilege.

It is no longer necessary to define the #rowanCompile variable nor to enable
GsPackagePolicy.

1.2 Error Reporting
Errors or unexpected behavior in Jadeite should be reported to GemTalk for triage and
analysis.

When reporting a problem, the following information should be provided:

A screen shot of the error, showing the Browser you were in, and providing a
description of the steps taken before the error occurred.

If a walkback occurs, a copy of the stack trace.

The Gem log, located in the usual location for your GemStone configuration (by
default, in the home directory of the UNIX user that owns the Gem process). The Gem
log includes console output from Rowan, including git commands executed.

The Jadeite.errors file in the directory from which you started Jadeite, which includes
errors on the Jadeite client.

1.3 Rowan Overview
Rowan provides the underlying support for code management that is used by the Jadeite
tools. Rowan implements Projects and Packages to associate related classes and methods,
and handle the loading, saving, and other behavior of Projects and Packages.

More details on Rowan are provided in the Rowan for GemStone User’s Guide. This overview
provides some basic introduction, to make the Jadeite functionality easier to understand.
6 GemTalk Systems

Jadeite 3.0.85 ReadMe and User’s Guide
Code management in Rowan
In Rowan, Packages and Projects are first class GemStone objects. Everything in Rowan is
based on a definition, with definitions for Projects, Packages, classes, and methods.

In base GemStone, SymbolDictionaries may be used to provide code organization; these
are not a primary code organization feature in Rowan. Rowan has some specific behavior
requirements between Package/Projects and SymbolDictionaries.

Since Rowan provides access to Git to perform the code version control, Rowan provides
support for Git branches. A Git branch is an independent development line which may
have many commits before being merged with the main development branch. You may
have many branches within a Git repository, but the files on disk represent the single
current branch.

Jadeite provides menu items that access behavior in Rowan; all these operations can be
done directly in GemStone Smalltalk code, by executing Rowan code. Git operations such
as pushes and pulls can be done in Jadeite, using Rowan code, or by using Git commands
on the Unix command line.

Rowan Packages
A Package contains definitions of classes, class and instance methods for those classes, and
extension methods for classes that are not defined in this Package. Every Rowan-managed
class and method is in a Package. Each Package has a name.

Class categories and Package names
In this version, the class category is used to map a class to a Package name. (Note that in
GemStone Smalltalk, method protocols that group methods within a class are also called
categories). Each class has a category, and for classes in Rowan, that category should
exactly match the name of a Package. Package name to category name matching is case-
sensitive.

Currently, Package names must therefore be unique within the image; a Package name
should not be used in more than one different Project.

The Rowan underlying code does supports separate package name and class category. In
some cases, such as when classes are "adopted" into Rowan, the category and package may
be different.

Rowan Projects
A Project represents a set of Packages that are managed within a single Git repository. A
single Git repository holds one Project.

Projects cannot be nested.

A Rowan project also has a a Rowan Project Configuration, which specifies further details
for the Project. Project Configurations can be nested.

Project Configurations are not currently accessible in Jadeite; you must use Rowan to
define and make changes to the Project Configuration.
GemTalk Systems 7

Jadeite 3.0.85 ReadMe and User’s Guide
Project Loading
Rowan load operations are atomic. One or more Projects may be loaded into the image
from Git repository/s on disk in a single atomic load operation.

The load operation determines what changes to the image are needed, then compiles the
changes into a private area that does not affect the behavior of the running system. Once
all changes to the private area have succeeded, the changes are made live.

This version does not support control over ordering of Package loading.

Class Initialization
Class initialization is performed as the last step in the load. When the load is otherwise
done, all new and changed class #initialize methods are executed. Class initialize methods
that have no changes are not executed.

Class initialization execution orders superclasses before subclasses, but does not define
ordering between peer classes.

You can avoid initializing classes by setting up a handling block for
RwExecuteClassInitializeMethodsAfterLoadNotification. For example, the following
disable class initialization for all classes loaded by the given block, or only selected classes,
respectively:
[Rowan projectTools load expression]

on: RwExecuteClassInitializeMethodsAfterLoadNotification
do: [:ex | ex resume: false].

[Rowan projectTools load expression]
on: RwExecuteClassInitializeMethodsAfterLoadNotification
do: [:ex |

(listOfClasssNames includes: ex candidateClass name)
ifTrue: [ex resume: false]

GemStone SymbolDictionaries
All classes and methods extensions defined within a single Package are loaded and related
to a single symbol dictionary. The same SymbolDictionary may be used by multiple
Packages and multiple Projects.

A Project and Project Configuration have a default SymbolDictionary, which will be used
for all classes and methods in all Packages unless otherwise specified.

The Project Configuration allows each individual Package’s classes and methods to be
loaded into a specific SymbolDictionary. This can be decided conditionally at load time,
based on the user or other conditional attributes.

Managing the organization of code in SymbolDictionaries is not yet handled by Jadeite, but
can be done by executing Rowan code and by editing the Configuration files on disk.

The Jadeite Project Browser provides a way to view the SymbolDictionaries in your image,
and the classes contained in them, by selecting the project (NONE).
8 GemTalk Systems

Jadeite 3.0.85 ReadMe and User’s Guide
Extension Methods
In base GemStone, each class and instance method follows its class. By default, the methods
in a class are defined in the same Package as the class itself.

However, methods may belong to a class that is defined in a different Package. This is
done, in this version, by putting the method in a method category (protocol) with a
specifically formatted name, as follows.

Method category (protocol) names and Package names
To define a method in a package other than the package that its class is in, you will add the
method to a specifically-named method category (method protocol), composed of a
leading asterisk followed by the name of the package.

’*PackageName’

For example, if there is a Package named Foo-Bar, all methods in a method category named
*Foo-Bar will be in the Foo-Bar Package, no matter which Package the method’s class is
defined in.

This limits the flexibility in organizing methods by method category, since moving a
method into another category may change its package location.

Package name matching for extension method categories is case-insensitive (unlike the
matching for class category name).

Global extension methods
Defining extension methods on base classes is a special case, since these methods must be
in a package that loaded into the Globals SymbolDictionary, which is not appropriate for
ordinary application classes. Currently, such extension methods should be defined by
executing Rowan code.

Class Versioning in Rowan
When a new version of a class is created, all methods present in the existing version are
recompiled in the new class version.

If the existing version has subclasses, a new version of each of the subclasses is created, and
all methods in all these classes are recompiled.

By default, instance of versioned classes are not migrated to the new version. Automatic
migration this can be setup using Rowan protocol.

When one or more a new class versions are created by a Rowan load, these class versions
and the versions of all subclasses are created within the single atomic load operation, along
with any other added, removed, or modified methods and classes.

Rowan Files, Directories, and Formats
The details of Rowan are described in more detail in the Rowan for GemStone User’s Guide.

A Rowan repository contains three important directories (in addition to other files), which
are normally under the rowan directory:

specs/
containing one or more Project specification files that specify how the project is
GemTalk Systems 9

Jadeite 3.0.85 ReadMe and User’s Guide
loaded. These files are in .ston format, Smalltalk Object Notation, which is an
object serialization format that allows any object to be represented in a file.

configs/
containing one or more Project Configuration files that specifies the packages and
other Project Configurations in a Project. These files are also in .ston format.
Project configuration files may be nested, and load different sets of the packages
that are defined within the Project.

src/
containing the actual source code, organized by package, in one file per class .st
files; these are text files in tonel format. Tonel is a text based format for Smalltalk
code.

Rowan Project Configuration Files
The configs directory includes Rowan Project Configuration Files, in ston format. These
files specify package names and other Configuration files containing package names,
which together define the project’s contents.

Rowan Project Specification Files
The specs directory contains Rowan Project Loading specification files. These include all
the information needed to clone and load the given project, including the Git repository
information, the packages, and the user name and default symbol dictionary for loading.

While a Project Specification file normally resides in the project’s Git repository, it can be
copied elsewhere, and used by Jadeite tools to clone the project Git repository.
10 GemTalk Systems

Chapter

2 Jadeite
Jadeite provides an API for working with GemStone server code that is contained in
Rowan Packages and Projects.

The basic windows and menus that support the workflow are included in this User’s
Guide, but much of the operation is intuitive to users familiar with other Smalltalk IDEs.

The processes required to create a new Project, or move existing code into a Project, are not
currently supported entirely in Jadeite. See the Rowan User’s Guide for details on
operations that are done programmatically. The Jadeite operations described below can all
be done programmatically in Rowan using Jadeite Rowan Services.

Note that the Rowan projects are loaded as SystemUser. For full visibility of Rowan code,
or to load new versions of Rowan, you will need to log as SystemUser.

Rowan for GemStone relies on Git for code management. When multiple users work on a
single underlying Git code base, processes should be put in place and followed, to avoid
overwriting or losing work. See Chapter 3 for recommendations.

Jadeite vs. GBS
Jadeite, unlike GBS, does not replicate server code or objects to the client. Each operation
retrieves the relevant data from the server for display in the Jadeite views, and code
executed in a workspace in Jadeite is executed on the GemStone server.

Transaction mode
Jadeite normally runs in automatic transaction mode, and does not provide tools support
for running in other mode. You may switch to other modes by executing code such as:

System transactionMode: #manualBegin
GemTalk Systems 11

Jadeite 3.0.85 ReadMe and User’s Guide
2.1 Logging in and Project Operations
Jadeite provides a subset of tools, similar to the tools provided by GBS or other Smalltalk
IDE.

Logging in
Figure 2.1 Login Dialog

The Login Dialog is similar to the GBS Session Parameters Editor, and includes the
parameters required to log in to a GemStone repository. In addition to the common
parameters show, the Advanced tab includes additional GemStone login parameters with
default values.

These parameters are stored in the Windows registry, so are initialized when Jadeite is
started up again on the same node.

Only one session at a time may be logged in.
12 GemTalk Systems

Jadeite 3.0.85 ReadMe and User’s Guide
Console Window
On login, Jadeite opens a Console Window. The Console remains open for the lifetime of
the session; closing the Console:

 logs out the GemStone session, asking if you wish to commit the transaction;

 closes all other open Jadeite windows; and

 returns you to the Login Dialog, re-enabling the Login button.

You may use the control-F7 button at any time to bring up the Console window.

Figure 2.2 Console

The Console provides:

A number of tabs providing system information and workspace; and

Menus to access system configuration settings, and to open the various browsers.

On login, the initial selected tab is the Projects tab.

You may use the Workspace tab to execute Smalltalk code; this code is executed on the
GemStone server. Jadeite also supports separate workspaces, using options on the File
menu and icon toolbar.

The other tabs provide GemStone system information, based on GemStone System class
queries, and are primarily of use for server monitoring and administration, and debugging.

Each tab has individual pop-up menus that are specific to the functions of that tab.

The menu bar menus provide system-wide functionality, regardless of the selected tab.
GemTalk Systems 13

Jadeite 3.0.85 ReadMe and User’s Guide
The Console Jadeite menu
The Jadeite menu on the Console window includes basic GemStone operations such as
commit, and allows you to enable and disable some system-wide features.

The preference features that can be disabled or enabled using this menu are listed below.
A black circle means the feature is enabled; without a black circle, the feature is disabled.

These options are not persistent across logins; however, you can configure these in the
preferences files (described on page 15), so they are set during login.

Transcript writes enabled
When enabled, the Jadeite transcript will be updated with Rowan commands.
Rowan performs transcript writes using client forwarders.

Over a slower network, these may impact performance for many operations, such
as opening browsers.

AutoCommit enabled
When enabled, a GemStone commit (not a git commit) is performed after every
successful server operation. This includes both method saves and ad-hoc
executions that create or modify persistent objects.

When autocommit is enabled, the camera icon in the lower left corner of the Project
Browser and Method List Browser is green (see graphic on page 22)

Breakpoints enabled
Using this, you can enable and disable all breakpoints without specifically
removing them.

Autocomplete enabled
When enabled, Jadeite will attempt to determine the word you are typing and
make suggestions.

Logging Enabled
When logging is enabled, underlying dolphin walkback stack traces are written to
a log file, which may be used for problem diagnosis by GemTalk Engineering. The
logs can be browsed using the Browse menu item Browse Logs.

Enabling logging impacts performances; it is recommended to leave this disabled
except when specifically diagnosing a problem.
14 GemTalk Systems

Jadeite 3.0.85 ReadMe and User’s Guide
Preferences File
Jadeite has the option to read preferences from a disk file on startup. A file named
Jadeite.prefs, located in the same directory as the Jadeite executable, is read on login,
and used to configure preferences and trigger the opening of specific browsers. If the file
does not exist, default values are used.

You may use the Preferences Browser to create a file based on the template, or reset the
settings.

The preferences file Jadeite.prefs is a simple text file that may contain one or multiple
of the directives listed in this section. A leading # can be used to include text comments, or
to comment out and disable specific settings.

The options that can be set fall into two groups.

Jadeite settings
These are system-side Jadeite options that can also be set from the Console Jadeite menu:

autocommitEnabled: true | false (Default is false)
autocompleteEnabled: true | false (Default is true)
breakpointsEnabled: true | false (Default is true)
loggingEnabled: true | false (Default is false)
transcriptEnabled: true | false (Default is false)

If a setting is present more than once in the file, the value of the last one is used.

If the line is commented out, or not present, the system default value is used.

Startup windows
These specify Browser Windows that can be automatically opened on login. For example,
you may wish to always open a Project Browser on a particular Project.

The following types of windows can be set to automatically open:
openBrowserOnClass: className
openBrowserOnPackage: packageName
openBrowserOnProject: projectName
openSUnitBrowserOnPackage: packageName
openWorkspace: pathAndfileName

These entries may appear more than once, so you can open more than one Browser
window of the same type or multiple workspaces.

If the argument does not exist, the specified Browser window will be opened, but no
selection made.

Preferences File Browser
The Console Browser menu item Browse Preferences File brings up the Preferences File
Browser, similar to a workspace. This adds the following to the Jadeite menu:

Preferences Options Workspace
This opens a workspace containing example default preferences.

Reset Preferences to default
This resets the text in the workspace to the default. You must save this for the
changes to take effect on the next login.
GemTalk Systems 15

Jadeite 3.0.85 ReadMe and User’s Guide
The Console Browse menu
The Browse menu on the Console window includes options that open the various Jadeite
browsers.

The menu items include:

Browse Projects
Open the Projects Browser.

Browse Processes
Open a list of processes within the current session.

Browse SUnit Tests
Open the SUnit Browser, allowing you to examine and run all SUnit Tests in the
system.

Find Class...
Prompt for the name of a class, providing a drop-down list of matches, and open
a Projects Browser with that class selected.

Find Class References...
Prompts for the name of a class, providing a drop-down list of matches, and opens
a Method List Browser containing all methods that have a reference to that class.

Browse Implementors of ...
Prompts for a method selector, and open a Method List Browser on all
implementors of that selector.

Browse Senders of ...
Prompts for a method selector, and open a Method List Browser on all senders of
that selector. You may include a trailing * to perform a wild-card search.

Browse Methods Containing ...
Prompts for a string, and open a Method List Browser on all methods that contain
that sequence of characters. You may include a trailing * to perform a wild-card
search.

Browse Literal References ...
Prompts for a literal reference, and open a Method List Browser on all methods
that reference that literal. Literal references include numbers such as SmallIntegers
and SmallDoubles, literal Arrays such as #(1); and strings (enclosed in single
quotes) and symbols (with leading #).
16 GemTalk Systems

Jadeite 3.0.85 ReadMe and User’s Guide
Browse Breakpoints
Opens the Breakpoint Browser, a Method List containing all methods that have
breakpoints.

Browse Logs
Opens the Jadeite Log Browser. If logging was enabled, this log contains logging
information for debugging.

Browse Preferences File
Opens the preferences file for Jadeite, or creates a template if it does not already
exist.

Project Operations and Workflow
Projects are the highest level of code organization in these versions of Jadeite and Rowan.
All application code is organized in Projects.

When you login using Jadeite, the Console displays the Projects tab. This gives you an
immediate overview of the state of your projects. The same list of Projects is also shown in
leftmost pane in the Project Browser.

Projects are displayed with text changes indicating the following state:

Projects that are loaded but have no changes either in the image or on disk are in
normal font.

If there are changes to the on-disk code for a Project that are not loaded in the image
(skew), the project is in Red font.

Red does not necessarily indicate a need for action. However, do not write to disk if
there is skew, since it may create corruption in the logical state in the git repository
itself.

You may select multiple projects and load them in one operation on the Console
Projects tab.

If you have skew on the Rowan Projects, you must login as SystemUser in order to
update.

A Project that is attached (the Clone Git Project... menu item was used), but not
loaded, is displayed in Bold Italic font. This will not have a "Loaded Sha" number (the
middle column on the Console Projects tab). The loaded Sha is a column in the
Console Projects tab; to see this in the Project Browser you can use the lower pane
Project tab.

A Project that has changes in the image that have not been written to Git is in Bold
Italic font.

The default Project is displayed with an asterisk *.

The Console Project Tabs is multiple-select; this allows you to load or write multiple
Projects in one operations. The Project Browser Project Pane is single select. The Project
Browser Project menu, and the popup menus for the Project Pane and the Console Project
tab, have similar options.

Workflow operations can be done either in the Console Projects tab, or in the Projects
Browser. For more on the recommended workflow, see Chapter 3.
GemTalk Systems 17

Jadeite 3.0.85 ReadMe and User’s Guide
Project Menu Operations
The following workflow project operation menu items are available:

Make Default
Make the selected Project to be the default Project.

Clone Git Project...
Opens a dialog requesting the url for a Rowan specification .ston file, and a disk
path for the Git repository to be cloned (copied).

If the Project has not already been cloned to this location, the Project specified by
the Rowan .ston file is cloned to the given directory. If it is present, the existing
clone is not affected, and the result is only that the Project is "attached" to the
GemStone repository. This operation does not load the project.

Load
Load the selected Project or Projects from disk. This is used to load an attached
Project, or to update an existing loaded Project. Any existing code for this Project
in the image is reverted to the on-disk version of the Project.

Unload
Unload the selected project from the Repository. The project will remain on disk.

Pull from Git
Updates your local Git repository for the selected Project from the shared Git
repository.

Commit to Git...
Writes out the code in your image for the selected project to disk, and commits it
to the local Git repository. A commit comment is required.

Note that this does NOT perform a GemStone commit. It is recommended to
perform GemStone commits frequently to ensure your work is saved.

Push to Git
Pushes the project in your local Git repository to the shared Git repository.

Changes
Display the changes in the selected Project (further detail on page 19).

Write
Writes out the code in your image for the selected project to disk, but does not
commit to Git. This allows you to perform command line Git diffing before
committing to Git.

Checkout Git Branch...
Opens a dialog listing the current branches in your repository, and give you to the
option to checkout (switch) to a branch.

Git Log
Display the Git commit log for the selected Project.

Browse Commit In Github
For Projects cloned from GitHub, opens a Browser window on GitHub with the
given commit.
18 GemTalk Systems

Jadeite 3.0.85 ReadMe and User’s Guide
Refresh
Update the display.

Note that these menus have a few additional menu items that are not common to both.

Changes Browser
Before writing your work to disk, or committing it to git, you may wish to review the set
of changes you’ve made. The Changes Browser provides a list of all changes between what
is on disk, and the image.

The Changes Browser can be opened from the Project menu item Changes.

You may also see changes in just a specific package within your project, using the Project
Browser Packages pane Show Changes menu item.

Figure 2.3 Changes Browser

The lower panes of the Changes Browser provide a comparison between the on-disk
version from the git repository, and the version currently in the image.

The Changes Browser is read-only, but the Browse menu item allows you to open a
browser on a selected change.
GemTalk Systems 19

Jadeite 3.0.85 ReadMe and User’s Guide
Example Project Load
The Rowan Project includes several examples, RowanSampleN, which can be used to
experiment with loading a Git repository into your image and making changes.

These are projects on github, which are provided along with the distribution as git
repository directories; the specification files are in the Rowan samples directory.

1. Clone the Git Project
If you do not have access to GitHub, copy or clone the Git repository directories for
RowanSample1 into your $ROWAN_PROJECTS_HOME directory. As long as the Git
repository is present here, the load will proceed without using GitHub.

cd $ROWAN_PROJECTS_HOME
git clone sharedRowanSample1GitRepositoryDirectory

You can skip this step to load the project directly from GitHub; for the RowanSampleN
projects, this can be done since the specification files are included in the Rowan project
examples directory.

1. Attach the Git Project
Use the Projects Browser menu item Clone Git Package.... This will clone the project
from GitHub only if it is not present; if the Git repository is present, it is attached to the
image.

The menu item presents a dialog with two fields: a Rowan specification file, and a
directory into which to clone the repository. The default settings will clone, or verify
the existence of, RowanSample1, at the location $ROWAN_PROJECTS_HOME.

file:$ROWAN_PROJECTS_HOME/Rowan/samples/RowanSample1.ston

$ROWAN_PROJECTS_HOME

2. Load the Project into your image
The Project will appear in the Projects Browser, in italic font since it is attached but not
loaded.

Select this Project and use the menu item Load... to load it.

The font in the Projects Browser becomes normal, and the SHA of the commit is
displayed, since a specific commit is loaded.

3. Select or create an individual branch
It is optional, but may be helpful to follow the workflow if you have your own branch.
The Git command line will create a branch in your local repository:

cd $ROWAN_PROJECTS_HOME/RowanSample1
git branch myName

4. Checkout your branch
In the Projects Browser, use the Checkout... menu item to switch to your branch.

5. Commit the GemStone Transaction
Use with Transcript Window Commit Transaction menu item to commit your state.
20 GemTalk Systems

Jadeite 3.0.85 ReadMe and User’s Guide
2.2 Browsing and Code Development
There are two browsers that are the primary places to browse and write code:

the Project Browser, which allows you to view both code based on the Project and
Package, and code that is not packaged.

the Method List Browser, which displays a list of methods returned from a query,
such as Implementors of or Senders of.

In this release, the Dictionaries Browser is no longer needed or available. The Project
Browser allows you to view and edit both packaged and unpackaged code based on the
SymbolDictionary.

You may also edit and save method changes in the Debugger, which provides many of the
features of the Project and Method List Browser text panes.
GemTalk Systems 21

Jadeite 3.0.85 ReadMe and User’s Guide
The Project Browser
The primary browser for code development is the Project Browser.

Figure 2.4 Project Browser

The panes in this browser will be generally familiar to Smalltalk developers.

Projects Pane
Projects are listed in the Projects pane, and the operations that can be done on Projects is
described in “Project Operations and Workflow” on page 17.

Rowan Projects, and Application-specific Projects, are listed by name. The package
(NONE) provides allows you to browse code that is not in projects, such as base GemStone
22 GemTalk Systems

Jadeite 3.0.85 ReadMe and User’s Guide
code. The (NONE) package provides browsing by SymbolDictionary, which allows you to
browse both base GemStone code and Rowan and Application code that by their
SymbolDictionary.

In addition to the Project menu operations listed on page 18, the Projects menu includes the
Add Package... option. Note that you must manually update the specification, as described
under “Adding Packages to Project” on page 35; otherwise the added package is not
permanently part of the project, and will be lost if the project is reloaded.

Packages Pane / Dictionaries Pane
When a project is selected, this pane lists the Packages in the selected Project or Projects.
You may select multiple Packages, which will display all the classes in the selected
packages in the classes pane.

When the (NONE) project is selected, this pane lists all SymbolDictionaries defined in this
GemStone image. GemStone kernel code is under the Globals SymbolDictionary, Rowan
classes are in Globals and in the Published SymbolDictionary,

Classes Pane
You may view the classes in the selected package alphabetically, or within the class
hierarchy, depending on if the Classes or Hierarchy tab is selected

If the package contains extension methods on classes that are not in the selected package/s,
those classes are shown in purple font.

If a class is selected in the Classes tab before you select the Hierarchy tab, it will show only
the hierarchy for the selected class. If no class is selected, it shows when you select the
Hierarchy tab it will show the hierarchy for all classes in the selected package.

Categories Pane / Variables Pane
Categories with names beginning with an asterisk * contain methods that reside in the
package of that name (case-insensitive).

There are some exceptions, for non-Rowanized GemStone base classes. These may contain
categories beginning with asterisk, although they are not associated with a project or
package.

Note that categories are not first-class objects in Rowan. Category changes do not show up
in the Changes Browser and may not be removed by reload. Categories are written as part
of the method definition in Rowan.

With the Variables tab selected, you may add accessor methods for instance variables, and
locate methods that read or write a particular instance variable.

Methods Pane
The methods pane lists the methods in the selected class, and in the selected category or
that references the selected variables; or all methods if no category or variable is selected.

Class or instance method display is based on the Instance / Class tabs at the bottom of the
classes pane.

All methods for the selected class are included, regardless of which package they are in or
if they are not packaged.
GemTalk Systems 23

Jadeite 3.0.85 ReadMe and User’s Guide
Methods that are in a different package than the package that contains their class
(extension methods), are in purple font, regardless of the selected package or packages.

Purple extension methods that not in the currently selected package/s are also underlined.

Note that, if the class is not defined in the selected package/s, and is therefor in purple font
in the classes pane, the methods that are in normal font are therefore not in the currently
selected package. These methods are in the same package as their class, and are not
extension methods.

Normal font is also used for non-rowanized GemStone base class methods.

Multiple Tabs in Project Browser
The Project Browser supports multiple tabs, using the Project Browser’s Jadeite menu item
New Projects Browser or the corresponding toolbar icon. This allows you to easily move
between methods, classes or projects within the same window. The tabs will automatically
be labeled with the selected Project, Package or Class name.

Orange buttons on the right side, with arrows and "x", allow you to navigate between tabs
or close a tab.

Features and Attributes of the lower/code pane
The lower pane provides a number of functions, such as displaying Project details and
source code. There are several useful features in this pane.

Background Color
By default, the background of lower source code is light yellow. For tabs with editable text,
the background becomes light green when there are unsaved changes. If there are compile
errors when saving method source code, the background becomes pink.

You may use the Preferences menu items Color for No Edits..., Color for Unsaved Edits...,
and Color for Compile Errors..., to define different colors.

Class Definition Tab
This allows you to view or edit a class defintion, or define a new class.

Class Documentation Tab
This allows you to view or edit the class comment.

Method Source Tab
This allows you to view and edit the source code for a method, or create a new method.
24 GemTalk Systems

Jadeite 3.0.85 ReadMe and User’s Guide
SUnit Tab
GemStone supports the SUnit testing framework. SUnit application test classes are classes
defined in the hierarchy of base GemStone’s TestCase class. The SUnit tab allows you to see
and run all or selected tests on an test class.

Similar testing behavior is also provided in the SUnit Browser (described on page 30).

You may also run all or individual tests using method pane menu items.

Figure 2.5 SUnit tab
GemTalk Systems 25

Jadeite 3.0.85 ReadMe and User’s Guide
Comparison Tab
With a method selected, you may use the Comparison tab to see the differences between
the selected method’s implementation, and the implementation of this selector in the
class’s superclass hierarchy.

Text differences are highlighted in yellow.

Figure 2.6 Comparison Tab

Project Tab
This tab provides details on the selected project.

In addition to the branch and sha, this allows you to see the projectUrl and the setting for
$ROWAN_PROJECTS_HOME.
26 GemTalk Systems

Jadeite 3.0.85 ReadMe and User’s Guide
Method List Browser
When you perform operations such as Senders Of..., Implementors Of..., a method list
browser is opened.

Figure 2.7 Method List Browser

The Method List Browser displays both packaged and non-rowanized base methods.

Each of the column headers (Project, Package, Class, Protocol, and Method), are sortable.
GemTalk Systems 27

Jadeite 3.0.85 ReadMe and User’s Guide
Querying: Senders, Implementors, etc.
Jadeite provides a number of ways to lookup methods and classes.

Method lookup methods are found on the Project Browser methods pane. These include
both lookup on the specific selected method, and lookups that query for the criteria and
search over all methods in the system.

The Project Browser Jadeite menu provides a Find Class... menu item.

The Console Browse menu also provides general method lookup and find class.

Popup Menu context-aware menu items
In addition to the static method pane and drop down menus, the method source pane and
workspaces will provide context-aware menu options. The syntax is somewhat different
between the two; the method source knows exactly which specific compiled method
selector is in use, while the workspace must rely on textual clues.

In a Workspace, you must select an expression in order to see the methods send. Note that
this detects the last method send, which is a multi-keyword method.

Figure 2.8 Workspace Menu with expression selected
28 GemTalk Systems

Jadeite 3.0.85 ReadMe and User’s Guide
You can lookup a class by selecting text containing the name of a class or global in the
workspace; note that Browse Class is now enabled:

Figure 2.9 Workspace Menu with Class selected

When Browsing method source code using the Project Browser or Method List Browser,
however, you do not need to select the method. Wherever the mouse point is when the
menu is opened will determine the selector displayed in the senders/implementors menu
items.

Note that for multiple-keyword methods, only the first keyword of the selector will be
detected; if the cursor is on the second and later keyword, nothing will appear in the menu.

Figure 2.10 Method Source Menu without selection

Class lookup is also available in the Method Source pane; this does require that the class
name be selected.
GemTalk Systems 29

Jadeite 3.0.85 ReadMe and User’s Guide
SUnit Browser
The SUnit Browser allows you to see and run all tests that are visible to the user, anywhere
within the image.

Figure 2.11 SUnit Browser
30 GemTalk Systems

Jadeite 3.0.85 ReadMe and User’s Guide
2.3 Debugger
The Debugger allows you both to examine object state in case of an unexpected error, and
to step through code after setting a breakpoint.

If an error occurs in the code, a walkback window is opened, which allows you to open the
debugger, continue, terminate or copy the stack.

Figure 2.12 Walkback

The Debug button opens the debugger.

Figure 2.13 Debugger on code error
GemTalk Systems 31

Jadeite 3.0.85 ReadMe and User’s Guide
The debugger provides a subset of basic Smalltalk debugger operations as supported by
the GemStone server. You may step into, step over, and a small number of similar
operations.

The upper right pane provides information on the variables in the selected context. The
receiver is first; method arguments and temporaries are below in the same list, and you
may need to scroll to see them. These values are not modifiable.

You may save method changes in the debugger, which will trim the stack.

Stepping through code
The debugger supports the following code options, available on the icon bar as well as the
Debug menu:

Figure 2.14 Debug menu and toolbar options

The debugger supports the following code options

Step Into
Step, stepping into a method send or block

Step Over
Step, stepping over a method send or block

Step Out
Step out of a block or method send

Step Through
Step into a block, stepping through the infrastructure

Resume
Resume code execution

Restart
Restart code execution

Breakpoints
You can set breakpoints in your source code, which allows a debugger to open on the
specific code you wish to examine.

To set a breakpoint, use the popup menu with the cursor over a selector or operation that
is a step point; operations with step points have a gray underline (notice this underline
under assert:, new, bar, and =, in the method below).

When popped up over a step point, the popup menu includes the option to set a break at
that step point within the method.
32 GemTalk Systems

Jadeite 3.0.85 ReadMe and User’s Guide
For multi-keyword methods, you must have the cursor over the first keyword in the
selector.

Figure 2.15 Setting breakpoint

Breakpoints in method source code are displayed enclosed in a red box.

When code execution encounters a breakpoint, the debugger open.

Breakpoint Browser
Figure 2.16 Breakpoint Browser
GemTalk Systems 33

Jadeite 3.0.85 ReadMe and User’s Guide
The Breakpoint Browser allows you to examine all breakpoints in the system, and clear
breakpoints for each method. You can open the Breakpoint Browser from the Project
Browser menu item Method > Browse Breakpoints, or the Console menu item Browse >
Browse Breakpoints.

The Breakpoint Browser is similar to a Method List Browser, but the menu bar Method
drop down menu includes the additional menu item Clear All Breakpoints.

Disabling Breakpoints
Breakpoints can also be disabled system wide, using the new Console menu item Jadeite >
Breakpoints Enabled.

When breakpoints are disabled, the normal red box outline becomes gray. When
breakpoints are disabled, breakpoints can be added and removed, but will not halt
execution. You can re-enable breakpoints at any time using the same menu item.

Breakpoints enabled is true by default, but can be defined in the preferences file, using a
line such as:

breakpointsEnabled: false
34 GemTalk Systems

Jadeite 3.0.85 ReadMe and User’s Guide
2.4 Code Caveats

Non-Rowanized code
The Jadeite browsers display and allow you to work with both rowanized code that is in a
package and project; and non-rowanized code. The GemStone kernel is not rowanized,
while all application code is normally in Rowan projects. Be careful to avoid creating any
non-rowanized application code. Non-rowanized application code isn’t visibly different,
but is not written to the git repository and is likely to result in errors.

Do not use class or method creation or manipulation methods such as
compileAccessorMethodsFor:, that do not have the rw prefix, to edit application
code.

Do not login using GBS or another tool to edit application code; you may browse
code, but do not commit changes.

The GemStone kernel code is not rowanized, and you should not modify this code (as
SystemUser) using Jadeite.

Adding or modifying extension methods on GemStone kernel classes is supported, but
there are special considerations for packaging due to Rowan’s requirements for extension
method’s and package’s SymbolDictionaries.

Aborts and the Transient Symbol Dictionary
When a project is loaded into a SymbolDictionary that was not previously defined, it is
added to the transient symbol dictionary. Abort does not update the state of a transient
symbol dictionary. If you make changes such as adding or removing classes, and perform
an abort or attempt to reload the project, the state of the project becomes inconsistent.

When loading a project that defines a new SymbolDictionary, it is recommended that you
commit your work, logout and login again.

To remove classes, use the class menu item Remove rather than abort.

Adding Packages to Project
A Package can be added to a Project using the Project Browser Add Package... menu item.

Adding a package requires editing the configuration file that defines the Project. See the
Rowan for GemStone User’s Guide for information on Project Configuration files. Otherwise,
the new package will not be loaded; and a load operation from the Git repository into the
image will remove the package.
GemTalk Systems 35

Jadeite 3.0.85 ReadMe and User’s Guide
36 GemTalk Systems

Chapter

3 Recommended
Workflow
Git is a powerful code management tool with many features. Without some care, however,
unintended situations can arise that may require some effort to resolve.

To ensure that work flows smoothly, it is strongly recommended that all developers follow
a disciplined workflow that takes into consideration all of the following:

The need for individual developers to save their in-progress work.

The need for multiple individuals to merge their work on shared code.

The need to keep both a main, trunk development line and branch development lines
in a usable state.

GemTalk recommends the following workflow for use with Jadeite and Rowan for
GemStone.

Getting Started
Each developer should have their own local clone (copy) of the Git repository, and have
their own branch in which to make code changes.

This process is described under “Browsing and Code Development” on page 21.

Code development
Code development using Jadeite is like any Smalltalk development. You may add, remove,
and edit classes and methods using the Project Browser, method browsers, or debugger.

Keep in mind the relationship between package names and method category (protocol)
names beginning with *, and class category names.

Each class is created in a package, and the category: keyword in the class creation
template must match the name of a loaded Package.
GemTalk Systems 37

Jadeite 3.0.85 ReadMe and User’s Guide
Note that adding a new Package requires an additional step, editing the Project
configuration, to make sure it is persistent.

You should commit your work frequently to your GemStone repository to be sure it is
saved in case the session has an error or is lost. The GemStone commit commits to the local
GemStone repository, and is entirely different than a Git commit.

Periodically, you may wish to commit to Git, using the Projects Browser Commit... menu
item. This writes your code changes to the local Git repository, and does a Git commit. It
does not share your work outside of your local Git repository.

Sharing work
When the code is working, you are ready to merge it into the shared repository. This
involves make sure that is will work with any other recent changes before making it
available to everyone.

This is a two-step process; first you will perform the merge in your own branch, which
allows you to test your changes, and verify that your new code works with any other recent
updates. Then, you will merge your branch into the master branch.

All this work is done in the local Git repository. Push and pull operations move the code
changes between the local Git repository and the shared Git repository.

1. Checkout the master (this switches you to the master branch). This can be done using
Jadeite in the Projects Browser Checkout... menu item, or using the Git command line,
e.g.

git checkout master

2. Pull the master branch from the shared Git repository. This updates your local Git
repository with the most recent shared master code. This can be done in Jadeite using
the Projects Browser Pull from Git... menu item, or using the Git command line, e.g.

git pull master

3. Checkout your individual branch. This can be done in Jadeite using the Projects
Browser Checkout... menu item, or using the Git command line, e.g.

git checkout individual

4. Merge the master branch into your individual branch. If there are conflicts, the
conflicts will need to be resolved before you proceed. This can be done using the Git
command line, e.g.

git merge master

5. Push the individual branch to the shared Git repository. This can be done in Jadeite
using the Projects Browser Push to Git... menu item, or using Git command line, e.g.

git push individual

6. Test the changes, to verify that the code runs as intended with the merged changes.

7. Once the merged changes are verified, checkout the master branch. This can be done
in Jadeite using the Projects Browser Checkout... menu item, or using the Git command
line, e.g.

git checkout master
38 GemTalk Systems

Jadeite 3.0.85 ReadMe and User’s Guide
8. Merge the individual branch into the master. This can be done using the Git command
line, e.g.

git merge individual

9. Push the master branch to the shared Git repository. This can be done in Jadeite using
the Projects Browser Push to Git... menu item, or using the Git command line, e.g.

git push master

Figure 3.1

����������	
�
����
	������
�	������
�

�
����������	

�����
����	
�

���
����	����
��

��

�
������
����������

���
	�������	������
�
�
����������	

����	����������������������
����

��

�
������
����������

��

��

�������	
�	
�	��

������	
�
�	�	���	
�

 	
�	�����	
�
���������������

�����

�������	
!!"

!!#

!!$ ������������	
�������������
����

������������	
!!%

 	
�	���������������������	
!!!&

��

��

��

��

��
!!' ����(���

��

!!!)�	�����

!!*)�	�����

!!+)�	�����

,	�	����	���
-�
��
	���

��
�
�

��
����������.��	/�	��������
����	
	�0�(�	�����������
������������	���
�	����������0

1������	������	2���	
�	������	
�����

Code Sharing Git activity
GemTalk Systems 39

Jadeite 3.0.85 ReadMe and User’s Guide
40 GemTalk Systems

	1 Introduction to Jadeite
	Supported Jadeite Platforms
	Supported GemStone Server Platforms
	Other Documentation
	1.1 Installing Jadeite
	Requirements for Rowan users other than DataCurator and SystemUser

	1.2 Error Reporting
	1.3 Rowan Overview
	Code management in Rowan
	Rowan Packages
	Class categories and Package names

	Rowan Projects
	Project Loading
	Class Initialization

	GemStone SymbolDictionaries
	Extension Methods
	Method category (protocol) names and Package names
	Global extension methods

	Class Versioning in Rowan
	Rowan Files, Directories, and Formats
	Rowan Project Configuration Files
	Rowan Project Specification Files

	2 Jadeite
	Jadeite vs. GBS
	Transaction mode
	2.1 Logging in and Project Operations
	Logging in
	Console Window
	The Console Jadeite menu
	Preferences File
	Jadeite settings
	Startup windows

	Preferences File Browser
	The Console Browse menu
	Project Operations and Workflow
	Project Menu Operations

	Changes Browser
	Example Project Load

	2.2 Browsing and Code Development
	The Project Browser
	Projects Pane
	Packages Pane / Dictionaries Pane
	Classes Pane
	Categories Pane / Variables Pane
	Methods Pane

	Multiple Tabs in Project Browser
	Features and Attributes of the lower/code pane
	Background Color
	Class Definition Tab
	Class Documentation Tab
	Method Source Tab
	SUnit Tab
	Comparison Tab
	Project Tab

	Method List Browser
	Querying: Senders, Implementors, etc.
	Popup Menu context-aware menu items

	SUnit Browser

	2.3 Debugger
	Stepping through code
	Breakpoints
	Breakpoint Browser
	Disabling Breakpoints

	2.4 Code Caveats
	Non-Rowanized code
	Aborts and the Transient Symbol Dictionary
	Adding Packages to Project

	3 Recommended Workflow
	Getting Started
	Code development
	Sharing work

